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Abstract

Brain computer interfaces (BCIs) offer a broad class of neurologically impaired individuals an alternative means to interact
with the environment. Many BCIs are ‘‘synchronous’’ systems, in which the system sets the timing of the interaction and
tries to infer what control command the subject is issuing at each prompting. In contrast, in ‘‘asynchronous’’ BCIs subjects
pace the interaction and the system must determine when the subject’s control command occurs. In this paper we propose
a new idea for BCI which draws upon the strengths of both approaches. The subjects are externally paced and the BCI is
able to determine when control commands are issued by decoding the subject’s intention for initiating control in dedicated
time slots. A single task with randomly interleaved trials was designed to test whether it can be used as stimulus for
inducing initiation and non-initiation states when the sensory and motor requirements for the two types of trials are very
nearly identical. Further, the essential problem on the discrimination between initiation state and non-initiation state was
studied. We tested the ability of EEG spectral power to distinguish between these two states. Among the four standard EEG
frequency bands, beta band power recorded over parietal-occipital cortices provided the best performance, achieving an
average accuracy of 86% for the correct classification of initiation and non-initiation states. Moreover, delta band power
recorded over parietal and motor areas yielded a good performance and thus could also be used as an alternative feature to
discriminate these two mental states. The results demonstrate the viability of our proposed idea for a BCI design based on
conventional EEG features. Our proposal offers the potential to mitigate the signal detection challenges of fully
asynchronous BCIs, while providing greater flexibility to the subject than traditional synchronous BCIs.
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Introduction

Brain computer interfaces (BCIs), more generally known as

brain-machine interfaces (BMIs), offer an alternative means to

interact with the environment, which is particularly important for

patients whose normal means of interaction are compromised by

central nervous system damage, such as caused by brainstem

strokes, upper spinal cord injury, and amyotrophic lateral sclerosis

(ALS) [1–4]. They may also provide an assistive mechanism to

healthy individuals in particularly demanding tasks [5–7]. Most

laboratory-based BCIs are designed to determine what the

subject’s intentions are, in the form of commands (or communi-

cation) signals, in a protocol where subjects are constantly

prompted to make choices. These designs side-step the critical

question of whether the subject is making a choice. The resulting

BCI provides a communication protocol that can be unnatural,

mentally demanding, and a source of user frustration [8]. In

response, several groups have developed ‘‘asynchronous’’ BCIs

[9,10], many of which are completely self-paced [11–14]. In these

cases, the subject volitionally determines when to issue commands,

and the BCI must determine on an ongoing basis whether the

subject is in a state of ‘‘intentional control’’ or ‘‘no control’’

(sometimes referred to as the ‘‘zero class’’) [15]. In the extreme

case, subjects have control over the onset and duration of the

commands, in addition to specifying the commands themselves

[16]. Asynchronous BCIs offer the advantage of increased usability

because the subject has more control over the speed of

communications. However, the BCI must then solve the signal

detection problem, trying to maximize true positives while

minimizing false positives, a tradeoff usually optimized by

adopting extra layers of design complexity such as error correction

schemes [17] and/or dwell times and refractory periods [10].

As a compromise, we consider a situation in which subjects are

externally paced but the BCI is able to determine on which

prompting cycles control commands are issued. A new BCI

paradigm which has sensitive time slots to decode whether users

want to initiate commands is investigated. Based on our semi-self-

paced BCI system, users volitionally determine in which time slot

to issue an actual command (e.g. left vs. right). Moreover,

removing the ‘WHEN’ issue (time slot when an actual command
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should be given) and separating command initiation (subject’s

choosing whether or not to issue an actual command) from actual

commands will lower user control complexity and BCI compu-

tation. In asynchronous BCI systems based on steady-state visually

evoked potentials (SSVEP), stimuli are constantly flicking in order

to evoke potential control commands for external devices [18].

However, constant flickering can be quite uncomfortable for users.

Moreover, even when users do not want to issue any commands,

the flicking light still goes on which can evoke potentials to be

detected as commands [19], thus leading to false positives. In such

situations, the proposed semi-self-paced paradigm could be used to

turn on and turn off flicking which will be comfortable for users

and decrease the false positive rate. An asynchronous BCI control

of a wheelchair in a virtual environment has been studied with a

tetraplegic subject [20]. However, that BCI used only two

command states, which limited the direction of movement. As

more classes of motor imagery are included, complicated signal

processing [21] or protocol of classification methods [22] are

needed, requiring heavy computation during the periods when the

subject is resting. Our paradigm largely mitigates the signal

detection problem of fully asynchronous BCIs while relaxing the

requirement that subjects issue control commands on every cycle.

In order to implement our proposed BCI paradigm, we examined

the following questions in this paper:

(1) Is scalp EEG sufficient for distinguishing between an

‘‘initiation’’ state, when subjects are preparing to make a

choice, and a ‘‘non-initiation’’ state during which subjects are

engaged in otherwise identical sensory and motor task

contingencies but not required to make a choice?

(2) Can EEG spectral power features discriminate between

initiation and non-initiation mental states based on single

trials with an accuracy of at least 70%, a threshold which is

acceptable in practical BCI applications [13]. We compared

the classification accuracy achieved using power in the delta,

theta, alpha and beta frequency bands [24].

(3) Recordings over which brain areas will be the most effective

in this semi-self-paced BCI application using EEG spectral

power as the classification feature? We are particularly

interested in whether EEG recordings over certain brain

regions are superior in discriminating initiation and non-

initiation states, or whether there is uniform discriminability

across brain regions.

Materials and Methods

A. Semi-self-paced BCI Paradigm
Semi-self-paced BCI is a very practical and user-friendly mode

of operation comprising three stages: an unrestricted cognitive

stage (‘‘free mental stage’’), a control initiation stage and a

command stage. Users are not consciously controlling their brain

activity in the free mental stage so that they can be free from the

mental tasks required in controlling the BCI. During the control

initiation stage at pre-set time slots, users have the option to

determine whether they want to issue a command by entering the

command stage, or they can stay in the free mental stage. Once

users are in the command stage, they can affect the BCI output to

give commands and communicate with the outside. Figure 1

depicts the timing for a semi-self-paced BCI system.

B. Subjects
Nineteen normal undergraduate students recruited through the

University of California at San Diego (UCSD) Department of

Psychology participated in the study. After detailed explanation of

the procedures, all subjects provided written informed consent

consistent with the Declaration of Helsinki. The study was

approved by the UCSD Institutional Review Board. All subjects

declared no history of neurological disorder. All subjects were right

handed according to Edinburgh handedness inventory [25] and

had normal or corrected to normal vision. Data of seven subjects

were removed because of technical problems with EEG acquisition

for six subjects and one subject allegedly had prior experience with

similar experiments. Five of the remaining twelve subjects (age

range 19–23, mean 20.3, SD 1.2) were female.

C. Task Design
Subjects were presented with a series of 512 trials in which they

chose between abstract visual images with a possibility of accruing

a small cash reward in each trial. The images presented in each

trial were selected from among four possible images, each with a

fixed probability of producing an identical reward value. In order

to maximize their earnings, subjects had to learn through trial-

and-error which images were more likely to pay off. The stimulus-

reward contingencies and corresponding rewarded learning

elements of the task are outside the scope of the present study.

See Peterson et al. [26,27] for full details on the experimental task

design.

Subjects were seated in front of a 19’’ touch monitor in

sufficiently close proximity to allow comfortable reaches to both

upper corners. The touch monitor was placed on a table with the

top approximately 45u back from vertical. As depicted in Figure 2,

subjects initiated each trial by pressing the green ‘‘go button’’

square in the lower middle of the touch monitor. After 800–

900 ms, a 3 inch square visual image appeared in each of the two

upper corners of the touch monitor. Subjects required 600–

700 ms to identify an image before they moved to choose it. There

was an 850–1100 ms delay before the start of the next trial. Actual

durations of each time interval specified above were chosen

randomly from a uniform distribution in each trial.

In this implementation, the task included two randomly

interleaved trial types: ‘‘non-initiation’’ and ‘‘initiation’’ trials.

On the non-initiation trials, subjects were given an ‘‘instructed

choice’’. They were presented with a solid blue square and one of

four abstract images. They were instructed to always choose the

abstract image. On the initiation trials, subjects faced a two-

alternative forced choice. They were presented with two of the

abstract images and were told to ‘‘choose the image that is more

likely to pay off’’. There were no initiation trials on which the two

images were identical. We fully counterbalanced the number of

presentations of each image and the side on which they were

presented. Maximum run lengths were three initiation trials, five

non-initiation trials, three non-initiation trials with the abstract

image on the same side, and five trials containing the same image

on either side. In this paper, the analysis is focused on the period

between image onset and the start of movement to select the

image. During this interval, subjects compared and identified

images in their minds without any overt movements for both trial

types.

D. EEG & EOG Signal Recording and Preprocessing
Scalp EEG was measured throughout the experiment at 512 Hz

using a 70-channel active electrode EEG system (Biosemi, Inc.),

including 64 scalp electrodes, one electrode on each of left and

right mastoid, electrodes above and below the right eye for vertical

electrooculogram (VEOG), and lateral to the outer canthus of

each eye for horizontal electrooculogram (HEOG).

A Semi-Self-Paced EEG Brain Computer Interface
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EEG signals were segmented into 800 ms epochs, i.e. [2200

600] ms time-locked to the onset of the two images for each

initiation and non-initiation state. No movement occurred in [2

200 600]ms based on the analysis that subjects required at least

600 ms to identify a selection before they moved to choose it.

Subsequently, EEG epochs with excessive amplitude (§100 mV )

were rejected from further analysis. Epoched data were then

passed to a third-order Butterworth bandpass filter in the

frequency range of 0.5–30 Hz. Each trial contained signals from

images onset to 600 ms, i.e. [0 600] ms. Signals during this interval

were baseline-normalized by subtracting the mean EEG voltage in

[2200 0] ms. For each trial, a common average reference [28]

Figure 1. Timing for a semi-self-paced BCI system with three stages. For a semi-self-paced BCI system, there are three stage: free mental
(FM), control initiation (CI), and command (CM) stages. At each pre-set time slot, i.e., control initiation stage, the user can decide to enter the
command stage or free mental stage. The figure shows that the user determined to switch to the command stage from the previous free mental
stage at time slot 1. At time slot 2, the user chose to stay at the previous stage, i.e. continuing to provide BCI commands. When time slot 3 arrived, the
user switched to the free mental stage. The user remained in this stage at time slot 4, such that the user was free from the mental tasks required in
controlling the BCI.
doi:10.1371/journal.pone.0088915.g001

Figure 2. Timeline of each trial(modified based on Peterson et al., 2011 [26]). Subjects initiated each trial by pressing the green ‘‘go
button’’ square in the lower middle of the touch monitor. After 800–900 ms, a square visual image appeared in each of the two upper corners of the
touch monitor. On the non-initiation trials, subjects were presented with a solid blue square and one of four abstract images. They were instructed to
always choose the abstract image. On the initiation trials, subjects were presented with two of the abstract images and were told to ‘‘choose the
image that is more likely to pay off’’. Subjects required 600–700 ms to identify an image before they moved to choose it. There was an 850–1100 ms
delay before the start of the next trial.
doi:10.1371/journal.pone.0088915.g002

A Semi-Self-Paced EEG Brain Computer Interface

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88915



signal, which was computed as the average voltage amplitude of all

64 EEG signal channels, was subtracted from the signal from each

EEG electrode in order to remove the unnecessary noise in the

EEG data acquired by the active electrodes [29].

Independent components analysis (ICA) decomposition using

extended Infomax [30] was applied to the EEG data. We used

DIPFIT [31] with the canonical Montreal Neurological Institute

boundary element head model to fit each independent component

(IC) to generate a single equivalent current dipole. In order to

remove eye and muscle movement artifacts, ICs whose dipoles

localized outside the brain volume or had residual variance larger

than 20% were rejected. Then the remaining ICs were projected

back to the original electrode space to extract classification features

without further rejection.

EOG signals were also first segmented into [2200 600] ms

epochs relative to the onset of the two images and then filtered by

the same third-order Butterworth bandpass filter in the frequency

range of 0.5–30 Hz. The average voltage in [2200 0] ms was

subtracted from the EOG data in [0 600] ms, as well, to generate

the EOG trials.

E. Feature Extraction
Seven EEG electrode clusters spanning the majority of the scalp

as well as one EOG cluster were selected for decoding analyses:

medial frontal to parietal brain areas (AFz, Fz, FCz, Cz, Pz, CPz),

frontal (F1, F3, F5, F2, F4, F6), right-parietal (CP4, CP6, P4, P6,

P8, TP8), left-parietal(CP3, CP5, P3, P5, P7, TP7), left-motor

(FC1, FC3, FC5, C1, C3, C5), right-motor (FC2, FC4, FC6, C2,

C4, C6), parietal-occipital (PO7, PO3, O1, O2, PO4, PO8), and

the EOG cluster (four electrodes: two above and below the right

eye, and two lateral to the outer canthus of each eye). For each [0

600] ms trial, the band power was calculated with fast Fourier

transform (FFT) at each selected electrode in frequency bands

ranging from 1.67 Hz to 30 Hz with bandwidth of 1.67 Hz. Each

1.67 Hz band power in the delta (1.67–4 Hz), theta (5.01–

8.35 Hz) and alpha (9–13.36 Hz) frequency bands were directly

used as discriminant features, resulting in 2, 3 and 3 features

respectively for each electrode. As the bandwidth is much larger in

beta (14–30 Hz), the beta band powers were averaged in each pair

(15.03,16.7) Hz, (18.37,20.04) Hz, (21.71,23.38) Hz, (25.05,26.72)

Hz and (28.39,30.06) Hz to derive 5 features for each electrode.

There are six electrodes in each EEG cluster and four electrodes in

the EOG cluster. The resulting feature dimensionalities in each

EEG cluster, taking into account the number of features per band

6 the number of electrodes, were and

2|6~12,3|6~18,3|6~18 and 5|6~30 respectively. Simi-

larly, the feature dimensionalities in the EOG cluster were

2|4~8,3|4~12,3|4~12 and 5|4~20: The electrode clus-

ter that contained the greatest amount of information differenti-

ating initiation and non-initiation states would be the one that

achieved the highest classification accuracy.

F. Classifiers and Statistical Comparisons
Support vector machine (SVM) with Gaussian radial basis

function (RBF) kernel implemented with the LIBSVM [32]

Matlab toolbox was chosen based on previous comparisons of

classifiers for scalp EEG-based BCIs [33]. For each subject,

randomly selected sets of 80% of the initiation trials and 80% of

the non-initiation trials were assigned to the training set, and the

remaining 20% to the testing set. In the training stage, the grid-

search algorithm was performed to identify optimal SVM soft

margin parameter C and the width of Gaussian kernel c using 10-
fold cross validation. The parameters C and c were searched in the

range C[f2{5,2{3,2{1,21,23,25,27,29,211,213,215g and

c[f2{15,2{13,2{11,2{9,2{7,2{5,2{3,2{1,21,23g. The discrimi-

nant model trained based on all trials in the training set using

Gaussian RBF SVM with optimal parameters was tested in the

testing set. Prediction accuracy was measured by the percentage of

correctly classified trials of the testing set. A two-way ANOVA was

performed on the classification accuracy with EEG clusters (seven

brain regions and one EOG cluster), and frequency bands (delta,

theta, alpha, beta) as factors. We used a significance threshold of

a~0:05 for all statistical tests. The Shapiro-Wilk test was used to

prove that the classification accuracy fulfills the Gaussian

distribution.

Results

A. Band Power Differences between Initiation and Non-
initiation States
Figure 3 presents topologies of power differences that were

calculated by subtracting power in non-initiation state from

initiation state in each frequency band. Beta band powers from

various clusters were observed to be higher in the initiation state

than in the non-initiation state. The largest differences in beta

band power between these two states occurred in occipital and left

frontal/motor clusters, which was consistent with [34]. While

larger delta band power differences occurred in the posterior

portions of frontal and motor clusters, and the anterior portion of

parietal clusters. Band power differences in alpha and theta bands

were larger in the occipital lobe. The heavier working load in

initiation state would induce higher alpha and theta band power

[35,36].

Figure 3. Topologies of band power differences between
initiation and non-initiation states. Power differences were
calculated by subtracting powers in non-initiation state from initiation
state in each frequency band in each electrode. Beta band powers from
various clusters were observed to be higher in initiation state than in
non-initiation state. While larger delta band power differences occurred
in the back of frontal, motor and front of parietal clusters. Band powers
in occipital lobe for alpha and theta bands were higher in initiation
state.
doi:10.1371/journal.pone.0088915.g003
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B. Prediction Accuracy Comparison over Frequency
Bands and Electrode Clusters
Figure 4 presents the results from comparing the classification

accuracies achieved with the features based on four standard

frequency bands over seven brain areas and one EOG electrode

cluster using all data in the time interval 0–600 ms. The results

reported here were based on the statistics averaged over all twelve

subjects. A threshold of 70% accuracy deemed to be acceptable in

practical BCI application [23] was adopted in this paper as well.

Band power in the beta frequency band provided the best

performance in each brain region, with an accuracy ranging from

78%–86% in classifying initiation and non-initiation mental states.

Delta band power over right-parietal, left-parietal, left-motor,

right-motor and EOG clusters also achieved classification accura-

cies higher than the threshold. Moreover, band power in theta and

alpha band recorded over parietal-occipital area yielded accept-

able performance for practical BCI applications.

Table 1 presents the results of the two-factor ANOVA statistical

analyses comparing the eight electrode clusters and four standard

frequency bands used in Figure 4. Factors of electrode cluster and

frequency band had significant effects on prediction accuracy.

Table 2 presents the post hoc analyses of the pair-wise

comparisons of eight different electrode clusters, and Table 3

presents the pair-wise comparisons for the four frequency bands.

Post hoc tests indicated that prediction accuracies achieved over

parietal-occipital, left & right parietal and left & right motor areas

were superior to those over medial brain regions and EOG signals.

Table 3 shows that beta band power performs better than other

frequency bands in distinguishing initiation state from non-

initiation state.

C. Prediction Accuracy Comparison over Subjects
Individual differences were present when the same classification

feature was used across subjects. Figure 5(a) shows the achieved

prediction accuracy for each subject using beta band power over

the parietal-occipital region, which obtained the highest accuracy

(86%) averaged over all subjects (Figure 4). Ten out of twelve

subjects yielded an accuracy of higher than 80%, six of which even

achieved higher than 90% accuracy. However, two subjects only

Figure 4. Prediction accuracy averaged across all subjects
using band power in the delta, theta, alpha and beta frequency
bands. The lower and upper edges of each box are the 25th and 75th
percentiles of prediction accuracy, while lower and upper whiskers
represent the worst and best accuracy. The black symbol in each box is
the average prediction accuracy across all subjects. MR, FT, rP, lP, lM, rM,
PO and EOG represent medial regions, frontal, right-parietal, left-
parietal, left-motor, right-motor, parietal-occipital and the EOG cluster
respectively.
doi:10.1371/journal.pone.0088915.g004

Table 1. Statistical Anova results for eight electrode clusters and four standard frequency bands.

Factor(s) F0:05 F P

Electrode Clusters 2:04 (df 1~7, dfe~352) 3.7 0.0008

Standard Frequency Bands 2:63 (df 2~3, dfe~352) 12.33 v0:0001

Electrode Clusters x Standard Frequency Bands 1:60 (df 1|2~21, dfe~352) 1.09 0.3594

doi:10.1371/journal.pone.0088915.t001

Table 2. Post hoc analysis of Anova results for eight electrode
clusters.

PO rP lP rM lM FT MR EOG

PO * * *

rP * *

lP * *

rM * *

lM * *

FT

MR

EOG

Prediction accuracy of electrode clusters are in descending order from left to
right and from top to bottom. Tukey’s range test was used for all post hoc
analysis. Conditions that are significantly different are marked with ‘‘*’’. PO, rP,
lP, rM, lM, FT, MR and EOG represent parietal-occipital, right-parietal, left-
parietal, right-motor, left-motor, frontal, medial regions, and the EOG cluster
respectively.
doi:10.1371/journal.pone.0088915.t002

Table 3. Post hoc analysis of Anova results for four standard
frequency bands.

Standard Frequency
Bands Beta Delta Theta Alpha

Beta * * *

Delta

Theta

Alpha

Prediction accuracy in four standard frequency bands are given in descending
order from left to right and top to bottom. Tukey’s range test was used for all
post hoc analysis. Conditions that are significantly different are marked with ‘‘*’’.
doi:10.1371/journal.pone.0088915.t003
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obtained 60–65% accuracy. Figure 5(b) illustrates the accuracies

predicted by delta band powers in the left motor area which

achieved the highest accuracy (Figure 4) averaged among all EEG

clusters in the delta frequency band. Subject 4 achieved the best

performance with 85% accuracy, while subjects 9 and 11 yielded

only 55% accuracy, which was near chance level.

Discussion

In this study, we investigated the fundamental problem of

separating initiation states from non-initiation states, demonstrat-

ing the viability of a new approach for BCI design in which

subjects are externally paced but allowed to determine on which

prompting cycles control commands are issued. Since the

proposed paradigm is novel, we evaluated it off-line prior to any

on-line application. Using SVM classification and EEG spectral

features, we could distinguish between the initiation state, when

subjects were preparing to make choices, and non-initiation states

during which subjects were engaged in otherwise similar task

contingencies but not required to make a choice. Higher band

power was investigated in the initiation state, especially in beta and

delta bands. Beta band power yielded the highest prediction

accuracy among four standard frequency bands. Performance was

above 70% correctly classified trials averaged over all subjects for

all EEG clusters, with the highest accuracy of 86% achieved at the

parietal-occipital area. Moreover, delta band power over parietal

and motor areas also achieved higher than 70% accuracy, and

thus could be used as an alternative feature to discriminate

initiation and non-initiation states. Individual differences were

present using the same classification feature across subjects. Two

subjects with the lowest classification accuracy using delta band

power over the left motor regions achieved much higher

prediction accuracy using beta band power over parietal-occipital

cortices. To achieve high classification accuracy, subject-specific

weighting for different frequency bands in different brain regions

would help in future BCIs customized to individuals. Although

spectral power of EEG provided good classification in our study,

additional future studies are required to validate the generality of

this finding across tasks, as well as across other types of non-

invasive and invasive BCIs.

One notable difference between the two trial types in our task is

that, in the non-initiation trials, one of the two visual stimuli

presented to subjects is an instructional visual cue indicating that it

is a non-initiation task. The cue is a visual stimulus (solid blue

square) that is visually distinct from the set of stimuli from which

subjects choose in the initiation trials. The dimensions, location,

and onset/offset timing characteristics of the cue are otherwise

identical. The paradigm requires subjects analyzing the images

appearing on the monitor screen and making the proper selection.

The process may involve various brain structures and modulations

besides EEG power spectra. The time-domain amplitudes for

‘‘initiation’’ and ‘‘non-initiation’’ states are presented in Figure 6.

Since the subjects have to react to the more valuable image in the

Figure 5. Prediction accuracy achieved for each subject using beta band power. Prediction accuracy achieved for each subject using beta
band power over the parietal-occipital area (a) and delta band power over the left motor area (b). Beta band power over the parietal-occipital area
and delta band power over the left motor area both achieved an average accuracy greater than 70%, with some subjects achieving nearly 100%
accuracy using beta band power recorded over parietal-occipital corticies.
doi:10.1371/journal.pone.0088915.g005
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initiation state, the appearance of such stimuli generates a higher

P300 potential compared to the non-initiation state. Considering

the length of the feature window (600 ms), the differences of the

P300 amplitude in the ‘‘initiation’’ and ‘‘non-initiation’’ states

might be one of origins for the differences in power spectra

between these two experimental conditions. There might be other

evoked potentials differences as well, which could be investigated

in the future.

Based on our results, an alternative way to implement an online

semi-self-paced BCI system can be described as follows. Similar to

our experiment, an alerting green ‘go’ square can be presented

800 ms ahead of control initiation stage. Assume the BCI starts at

the free mental stage. Two abstract images and a solid blue square

appear in random order in the screen in each pre-set time slot.

Users compare two abstract images carefully to identify the more

valuable one, if they want to switch to the command stage.

Otherwise, users simply think about choosing the solid square to

stay in the free mental stage. Moreover, control initiation time slots

could be presented between intervals of two actual commands

during the command stage, so that users can switch to the free

mental stage conveniently. Patients don’t need to learn and

remember extra control information when using similar visual

patterns during all the BCI stages, which can decrease the burden

of memory. Only mental responses are required to control the

whole proposed BCI stages.Meanwhile the implementation of the

proposed on-line BCI system is, in our opinion, not more difficult

than for other BCIs.
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