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Our ability to selectively engage with our environment enables us to guide our learning and to take advantage
of its benefits. When facing multiple possible actions, our choices are a critical aspect of learning. In the case of
learning from rewarding feedback, there has been substantial theoretical and empirical progress in
elucidating the associated behavioral and neural processes, predominantly in terms of a reward prediction
error, a measure of the discrepancy between actual versus expected reward. Nevertheless, the distinct
influence of choice on prediction error processing and its neural dynamics remains relatively unexplored. In
this study we used a novel paradigm to determine how choice influences prediction error processing and to
examine whether there are correspondingly distinct neural dynamics. We recorded scalp electroencepha-
logram while healthy adults were administered a rewarded learning task in which choice trials were
intermingled with control trials involving the same stimuli, motor responses, and probabilistic rewards. We
used a temporal difference learning model of subjects' trial-by-trial choices to infer subjects' image valuations
and corresponding prediction errors. As expected, choices were associated with lower overall prediction error
magnitudes, most notably over the course of learning the stimulus–reward contingencies. Choices also
induced a higher-amplitude relative positivity in the frontocentral event-related potential about 200 ms after
reward signal onset that was negatively correlated with the differential effect of choice on the prediction
error. Thus choice influences the neural dynamics associated with how reward signals are processed during
learning. Behavioral, computational, and neurobiological models of rewarded learning should therefore
accommodate a distinct influence for choice during rewarded learning.
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Introduction

Many forms of learning are driven by reward. Although we can
learn associations between environmental conditions and rewards (as
in classical conditioning), our ability to selectively engage with our
environment (as in instrumental conditioning) enables us to guide
our learning and to take advantage of its benefits. As a result, in the
face of multiple possible actions, our choices are a critical aspect of
rewarded learning. Yet the neural dynamics of choice's influence in
rewarded learning remain a mystery.

There has nevertheless been substantial progress in recent years
toward elucidating the neural correlates of rewarded (and non-
rewarded) feedback processing. A broad body of theoretical and
empirical evidence has accumulated suggesting that trial by trial
feedback-based learning is driven by phasic activity of the mesence-
phalic dopamine system (Abler et al., 2006). The predominant
concept is that the phasic dopamine activity signals actual versus
expected reward values, or a reward “prediction error” (Fiorillo et al.,
2003; Montague et al., 1996; Schultz et al., 1997). Concurrently, this
prediction error has gained widespread use in temporal difference
models of reinforcement learning (Sutton and Barto, 1998). The
mesencephalic dopamine system has been shown to modulate
frontocentral feedback-related potentials in monkeys (Vezoli and
Procyk, 2009) and humans (Jocham and Ullsperger, 2009). The
predominant characterization of this effect measured by subtracting
human scalp EEG after positive from that after negative feedback
conditions is the feedback-related negativity (FRN; Miltner et al.,
1997). The FRN has a frontocentrally dominant topography and is
thought to arise from generators in anterior cingulate cortex (ACC;
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Gehring and Willoughby, 2002). Holroyd and Coles (2002) suggested
that this differential activity in ACC, and the associated frontocentral
negativity at the scalp, reflect the reward prediction error's influence
in ACC. Subsequent experiments with fMRI in humans (Holroyd et al.,
2004) and single unit recordings in monkeys (Amiez et al., 2005) have
supported this role for ACC in prediction error processing.

In its simplest form, prediction error is determined not only by the
actual reward signal generated by your choice, but also the reward
you expected from that choice. In many everyday settings, the
relationships between choices and rewards are probabilistic. In this
context, and especially given the added temporal dynamics of
learning, subject expectations are at best only inferred and at worst
completely unpredictable. In an attempt to address this, in a
probabilistic reward task Hajcak et al. (2007b) asked subjects to
indicate their expectations before receiving feedback on each trial.
Subjects were asked before their response in one condition and after
(but still before feedback) in the other. Curiously, the FRN varied with
expectancies only in the latter condition. The authors suggested that
the FRN, and therefore ACC activity, were relatively more sensitive to
conditions in which expectations are more closely linked to choices.
Another way to measure expectation is to infer it from the
experimental conditions. For example, after a period of learning,
one can make reasonable assumptions about how subjects value
various alternatives, and then use stimulus/reward combinations to
determine crude estimates of expectations (Bellebaum and Daum,
2008). Of course, a more direct and finer-grained method is to use not
only the stimulus and reward contingency structure of the experi-
ment, but also the trial-by-trial evolution of subjects' actual choices, to
infer their relative choice valuations, expected rewards and
corresponding prediction error on each trial.

In this study we sought to determine whether and how choice
influences the neural dynamics associated with post-feedback reward
prediction error processing. To investigate this issue, we used a novel
paradigm where we can explicitly investigate the differential
influence of choice in rewarded learning. Specifically, we used a
rewarded learning task in which subjects are uninformed about the
probabilistic relationship between stimulus choices and rewards and
the relative merit of various options has to be inferred indirectly
through trial-and-error learning. We fit each subject's trial-by-trial
choices with a temporal difference reinforcement learning model. We
used themodel to infer on each trial their choice valuations and, based
on the feedback, the corresponding per-trial continuous valued
prediction error. Using a similar paradigm in primates, Morris et al.
(2006) found that phasic DA cell firing influenced choice policy.
Furthermore, we have previously shown that Parkinson's disease
patients off dopaminergic medications exhibit deficient performance
in this task, especially after a covert reversal of reward contingencies
(Peterson et al., 2009). Degeneration of mesencephalic dopamine cells
is a classic neuropathology of Parkinson's disease (Dauer and
Przedborski, 2003), so our previous results suggest that the
feedback-based learning inherent to the task depends on the integrity
of the mesencephalic dopamine system. Because of this, and the
growing body of evidence for ACC involvement in dopamine-
mediated learning (Amiez et al., 2006; Holroyd and Coles, 2002;
Jocham and Ullsperger, 2009; Vezoli and Procyk, 2009), we expected
that reward prediction errors would evoke neural responses in ACC
that have been partly ascribed to the dopamine reward system. We
computed reward-onset locked ERPs separately for “choice” trials on
which subjects faced a two-alternative forced choice and pseudo-
randomly intermingled “reference” trials on which no choice was
required but all reward contingencies remained the same. Based on
previous studies demonstrating a maximal effect of the FRN with a
frontocentral scalp topography, we focused our ERP analysis on
activity at the FCz electrode. Because the reference trials involved the
same stimuli, motor response execution, and reward contingencies as
their choice trial counterparts, comparing reference and choice trial
types allowed us to selectively characterize the differential influence
of choice in reward feedback processing.

Methods

Subjects

Nineteen neurologically intact undergraduate students at the
University of California San Diego (UCSD) participated. Subjects were
recruited through the UCSD Department of Psychology. After detailed
explanation of the procedures, all subjects provided written informed
consent consistent with the Declaration of Helsinki. All subjects
declared no history of neurological illness or brain surgery, normal
hearing, vision correctable to at least 20/40with corrective lenses, and
no current medications for depression. All subjects were right handed
according to the Edinburgh handedness inventory (Oldfield, 1971).
After a description of the task, subjects were asked if they had prior
experience with similar experiments. One subject explicitly asked if
there would be a change part way through this task. There were
technical problems with EEG acquisition software on an additional six
subjects. These seven subjects were omitted from the present analysis
leaving twelve subjects with a mean age of 20.3 (SD 1.2; range 19–
23). Five of these subjects were female. Subjects received partial
research credit toward completion of their Psychology course, in
addition to their cash winnings from the task as detailed below. All
procedures were approved by the UCSD Institutional Review Board.

Experimental task

We adapted a task originally used to study firing rates of dopamine
cells in primate substantia nigra pars compacta (Morris et al., 2006)
for use as an instrumental reward-based learning task with humans.
The task is a probabilistic rewarded learning task described previously
in a study of Parkinson's patients (Peterson et al., 2009). Briefly,
subjects were presented with a series of trials on which they chose
abstract visual images with a possibility of accruing a small reward on
each trial. The images presented on each trial were selected from
among four possible images, each with a fixed probability of
producing an identical reward value. In order to maximize their
earnings, subjects had to learn through trial-and-error which images
were more likely to pay off. Half way through the experiment, the
reward probabilities of the four images were covertly reversed.

Throughout the task, subjects were seated in front of a 19″ touch
monitor (Elo Touchsystems, model number et1925L-7uwa-1) in
sufficiently close proximity to allow comfortable reaches to both
upper corners. The touch monitor was placed on a table with the top
approximately 45° back from vertical. As depicted in Fig. 1A, subjects
initiated each trial by pressing the green “go button” square in the
lower middle of the touch monitor. After 800–900 ms, a square visual
image appeared in each of the two upper corners of the touch
monitor. Subjects chose an image by pressing it. Subjects were given
an auditory reward feedback signal 50–100 ms after selecting an
image. If they won money on that trial, they were presented with a
200 ms “high” tone (600 Hz). If they did not win money on that trial,
they were presented with a “low” tone (200 Hz). The two tones were
provided free field by standard PC speakers. The tones were identical
in amplitude and linear ramp up/down (40 ms each). Prior to starting
the experiment, subjects confirmed by verbal report that they could
hear and distinguish the two tones. Approximately 600–800 ms after
the reward feedback signal, the images disappeared and the go button
reappeared in the lower center of the monitor, prompting the subject
to begin the next trial. Subjects were required to wait until the two
images appeared before releasing the go button. There were no other
temporal constraints on their choice or the return to the go button.
They were simply instructed to “move to touch the image as soon as
you have decided which one to choose”. Actual durations of each time



Fig. 1. Task design. (A) Per-trial timeline. Time intervals in square brackets represent
durations drawn randomly from a uniform distribution over the specified range. (B) Visual
images, their index j, and their phase-contingent reward probabilities.
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interval specified above were chosen randomly from a uniform
distribution on each trial. Total trial duration averaged about 4 s.

The task consisted of two phases of 256 trials each. Interleaved
throughout the task were two trial types: reference and choice trials
comprising 62.5% and 37.5% of the trials, respectively. On the
reference trials, subjects were given an “instructed” choice. They
were presented with a solid blue square and one of four abstract
images. They were instructed to always choose the abstract image. On
the choice trials, subjects faced a two-alternative forced choice. They
were presented with two of the abstract images and were told to
“choose the image that is more likely to pay off”. If rewarded, they
received $0.07. Given the evidence that rewarded learning is
particularly sensitive to the use of real versus symbolic monetary
rewards (Kunig et al., 2000; Martin-Soelch et al., 2001; Smith, 1991),
we gave subjects actual cash for rewards. The abstract images and the
probability with which choosing them produced a reward [0.25, 0.50,
0.75 and 1.00] are shown in Fig. 1B. These reward contingencies were
flipped in the otherwise identical post-reversal phase of the
experiment. There were no choice trials on which the two images
were identical. We fully counterbalanced the number of presentations
of each image, the side on which they were presented, and the side on
which rewards were available. Maximum run lengths were three
choice trials, five reference trials, five trials with reward on the same
side, three reference trials with the image on the same side, and five
trials containing the same image on either side. Both 256-trial phases
were divided into 8 blocks of 32 trials each. At the end of each block,
subjects were shown their cumulative winnings and the actual
monetary amount placed on the table beside them was updated
accordingly, rounded up to the nearest $.25.

Subjects were first given a brief practice session, with eight
reference and four choice trials. The practice stimuli were four simple
geometric shapes that were different from any of the stimuli used in
the actual experiment. There were no feedback signals or rewards in
this practice session in order to avoid teaching any associations prior
to the actual experiment. Subjects were simply familiarized with the
mechanics of the trials, and particularly the explicit instruction to not
choose the solid blue square on reference trials. Prior to starting the
primary experiment, subjects were given an explanation of the
feedback signals and rewards. They were told that some images were
more likely to pay off than others, and it did not matter which side
they appeared on. Finally, they were told that to maximize their
winnings, they should try to figure out which images are more likely
to pay off than others. The average duration of the overall session,
including application, testing, and removal of the EEG cap, was
approximately 2.0 h.

Reinforcement learning model

We implemented a computational reinforcement learning model
to fit subjects' trial-by-trial behavior. Images j∈ {1,2,3,4} were
assigned values Qt(j) at each trial t of the experiment. When image
k was chosen, its value was incremented as a function of the reward
rt∈ {0,1} received upon choosing it:

Qt+1 jð Þ←
(
Qt jð Þ + α rt−Qt jð Þ½ �

Qt jð Þ

(
j = k
o:w:

The term [rt−Qt(j)] was referred to as the prediction error. Note
that a prediction error is calculated not only for choice but also for
reference trials. The amount bywhich the prediction error was used to
increment the image's value was weighted by the learning rate, or
“gain”, α. On choice trials where subjects had to choose between two
images m and n, we modeled their choice probabilistically with the
softmax function:

pt mð Þ = eβQ t mð Þ

eβQ t mð Þ + eβQ t nð Þ

where the parameter β quantified the bias between exploration (low
β) and exploitation (high β). We investigated the role of gain α and
exploration/exploitation bias β, evaluated over the ranges [0.01 0.70]
and [0 10], at uniform intervals of 0.04 and 0.5, respectively. We used
a simple grid search of the parameter space to evaluate the model's fit
with each subject's actual behavior. The fit at each point in the
parameter space was computed as the log likelihood that the model
makes the same choices at that the subject makes on the (two-
alternative forced) choice trials:

LLE = log ∏
t∈2AFC

pt atð Þ

We used the parameter value combination that best fit each
subject's choices to determine the trial-by-trial image valuations Qt(j)
and the reward prediction errors for each subject.

EEG acquisition and preprocessing

Scalp EEG was measured throughout the experiment at 512 Hz
using a 70-channel active electrode EEG system (Biosemi, Inc.),
including 64 scalp electrodes, one electrode on each of left and right
mastoid, electrodes above and below the right eye for vertical
electrooculogram (VEOG), and lateral to the outer canthus of each
eye for horizontal electrooculogram (HEOG). We used EEGLAB
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(Delorme and Makeig, 2004) and custom Matlab routines for EEG
analysis. Recordings were digitally band pass filtered offline between
1 and 100 Hz. The average reference was computed using all
electrodes (excluding EOG) that did not exceed a threshold of two
standard deviations above the mean for both variance and kurtosis.
Rereferenced scalp and EOG electrodes were used in all subsequent
analysis. All data were zero-phase band stop filtered with equiripple
FIR filters in the frequency ranges of 30–34 and 58–66 Hz to attenuate
extraneous artifacts from a motion capture system and line sources,
respectively. For purposes of a subsequent independent components
analysis (ICA) decomposition using extended Infomax (Bell and
Sejnowski, 1995), all experimental session blocks were temporarily
epoched into contiguous, non-overlapping 1 sec segments. Those
segments with iteratively determined improbable distributions were
removed. For each independent component (IC), we used DIPFIT
(Oostenveld and Oostendorp, 2002) and the canonical Montreal
Neurological Institute boundary element head model to generate a
single equivalent current dipole. To conservativelymitigate the effects
of ocular and myogenic artifacts, we rejected all ICs whose dipoles
were localized outside the brain volume or accounted for the IC's scalp
topography with greater than 20% residual variance. The remaining
ICs (mean 9 per subject, range 6–15) were projected back to the
native electrode space without further data rejection for all
subsequent analysis. Trials were epoched from 200 ms before to
700 ms after reward signal onset. Based on previous studies
demonstrating a maximal effect of the ERN and FRN with a
frontocentral scalp topography (as discussed in the Introduction),
we focused our analysis on activity at the FCz electrode. Reward-onset
locked event related potentials (ERPs) were computed separately for
choice and reference trials. We used native ERPs, rather than negative
minus positive difference ERPs as is commonly used in FRN studies for
three reasons: a) because we balanced for negative and positive
feedback signals (as described in the next section), b) to avoid
confusion arising from double negatives, and c) because the focus of
our analysis was on the differential effect of choice on general
prediction error processing.

Data analysis and statistics

Subjects' performance in each block was measured as the
percentage of the 12 choice trials on which they chose the favorable
image, i.e. the image more likely to pay off. Learning was evaluated
using a two-factor repeated measures ANOVA, with PHASE (pre-
reversal, post-reversal), and BLOCK as within subjects factors. For the
model simulation of the task, we used total winnings over the entire
task as a global measure of performance. The combination of model
parameters with the highest total winnings was used to generate the
simulation's learning curves. Based on the model fit to individual
subjects' behaviors, we also calculated the mean reward prediction
error magnitude in each block over all trials and separately for choice
and reference trials. The mean FCz ERP amplitude was similarly
calculated per block per subject for all trials and the choice and
reference trials separately. In order to control for the frequency of
rewards in the choice and reference trials, all comparisons involving
the two conditions' ERPs used a correspondingly “balanced” subset of
reference trials. Specifically, for each subject and each block, we
searched forward and backward from the middle of the block to find
reference trials involving the same distribution of images (and
therefore reward contingencies) as those produced by their choices
in that block. Because by definition this was dependent upon subjects
choices, in general the balancing algorithmhad to include in any given
block's set of matched reference trials some reference trials outside of
but temporally adjacent to that block's 32-trial set. This algorithm also
served to balance the number of trials of each condition. Prediction
error magnitude and FCz amplitude were evaluated using a three-
factor repeated measures ANOVA, with BLOCK, PHASE (pre-reversal,
post-reversal), and CONDITION (choice, reference) as within subjects
factors. In ANOVAs, we used Geisser–Greenhouse corrections for non-
spherical covariances.We investigated choice's dynamic influences on
the prediction error and the FCz amplitude by evaluating their
reference-corrected relationship using Pearson's correlation and
comparing the Fisher Z-normalized r values to zero with the Student's
t-test. Throughout the analysis, p-values less than 0.05 were
considered significant.

Results

Rewarded learning

The experiment took an average of 32 min to complete (SD 4,
range 25–38). By the end of the experiment, subjects had won an
average of $24.04 (SD $0.43; range $23.38–24.85). As depicted in
Fig. 2A, subjects learned to choose more favorable images, with choice
performance well above the 50% chance level. This was also borne out
by the two-factor ANOVA (see Table 1A), in which there was a main
effect of BLOCK demonstrating that subjects' performance increased
over time within each phase. By the end of the pre-reversal phase,
subjects made the more favorable choice an average of 90% of the
time. After the reward contingencies were reversed, choice perfor-
mance dropped to below-chance levels and did not reach pre-reversal
levels until the third post-reversal block. The reversal also produced a
strong main effect of PHASE. By the end of the post-reversal phase,
subjects chose the more favorable image 82% of the time. The
significant BLOCK×PHASE interaction is a result of the immediately
post-reversal drop and lower plateau in choice performance during
the second phase of the task.

For the space of model parameters explored, a simulation of the
task using the model produced a range of winnings from $21.93 to
24.92. Low learning rates and an emphasis on exploitation (high beta)
rather than exploration (low beta) produced the highest overall
“performance” (see Fig. 2B inset). Specifically, alpha=0.17 and
beta=9.5 produced the optimal overall winnings. Using these
parameter values, the simulation's “learning curve” (in Fig. 2B)
shows a grossly similar morphology to that of the subjects. The
simulation, however, reached higher plateaus of performance in both
phases, and recovered from the reward contingency reversal after
only two blocks, notably faster than the subjects. After fitting the
model to the subjects' trial-by-trial choices, the corresponding reward
prediction error (PE) magnitudes were evaluated and are depicted in
Fig. 2C. Mean PE decreased with learning, and transiently increased in
response to the reversal.

Choice and prediction error processing

To isolate the influence of choice on how the reward prediction
error (PE) is processed, we examined the block-by-block temporal
dynamics of PE magnitude separately for choice and reference trials.
Recall that the PE is computed similarly for choice and reference trials:
both conditions involve similar stimulus–reward contingencies and,
as inferred from the model, image valuations. As seen in Fig. 3A and
indicated by the main effects of BLOCK and PHASE in Table 1B,
prediction error magnitude decreases with learning and increases in
response to the covert reversal of reward contingencies. There was
also a main effect of CONDITION, whereby the mean PE is lower for
choice than for reference trials. This effect was most marked in the
first block of both phases in Fig. 3A and noted by the BLOCK×CONDI-
TION interaction in Table 1B.

Choice also modulated the frontocentral ERP response during each
trial's post reward feedback period (see Fig. 3B). Specifically, choice
trials involved a stronger positivity than reference trials over a period
of 150–500 ms after the reward feedback signal onset. This effect first
peaked at a latency of 190 ms. At that latency, there is a broad



Fig. 2. Rewarded learning. (A) Learning curves, % of “favorable” choices at each block of
12 choice trials. Mean and ±standard error across subjects. Chance performance is 50%.
Vertical line after block 8 denotes reward contingency reversal. (B) As in (A), but from
average over 30 runs of simulations with the “optimal” model. Inset: overall
performance (total winnings) as a function of model parameters. (C) Prediction error
magnitude, averaged over all trials in each block, mean±standard error across subjects.

Table 1
ANOVA summaries.

Factor(s) df F p

(A) Rewarded learning
BLOCK F(7,77) 9.08 0.0002
PHASE F(1,11) 11.88 0.0060
BLOCK×PHASE F(7,77) 5.39 0.004

(B) Prediction error
BLOCK F(7,77) 32.77 b0.0001
PHASE F(1,11) 49.05 b0.0001
CONDITION F(1,11) 70.16 b0.0001
BLOCK×PHASE F(7,77) 4.70 0.0090
BLOCK×CONDITION F(7,77) 34.08 b0.0001
PHASE×CONDITION F(1,11) 2.69 0.13
BLOCK×PHASE×COND F(7,77) 3.74 0.0015

(C) FCz 190-ms latency ERP amplitude
BLOCK (1) F(7,77) 2.51 0.074
PHASE F(1,11) 2.27 0.16
CONDITION F(1,11) 10.55 0.008
BLOCK×PHASE F(7,77) 0.27 0.97
BLOCK×CONDITION (2) F(7,77) 4.24 0.0026
PHASE×CONDITION F(1,11) 0.56 0.47
BLOCK×PHASE×COND F(7,77) 1.58 0.15

(1) Original p=0.0225, Geisser–Greenhouse epsilon=0.4384.
(2) Original p=0.0005, Geisser–Greenhouse epsilon=0.7045.
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frontocentral relative positivity for choice compared to reference
ERPs, as depicted in the 2-D scalp topographies shown in Fig. 3D. The
190 ms latency ERP at FCz did not exhibit systematic dynamics with
learning or reversal, as depicted in Fig. 3C and indicated by non-
significant main effects of BLOCK and PHASE in Table 1C. As suggested
by the overall ERP effect in Fig. 3B, there was a significant main effect
of CONDITION, whereby the choice trials exhibited higher amplitude
190-ms latency FCz ERPs than the reference trials throughout most of
the experiment, with the exception of blocks 5 and 9 at which time
themean choice and reference ERPswere not statistically significantly
different. There was a significant BLOCK×CONDITION interaction,
likely due to the differential response of the choice vs. reference trials'
ERPs in response to the reversal. The trial-by-trial evolution of
subjects' image valuationsQ( j) are depicted in Fig. 3E, averaged across
subjects at each trial.

Choice's dynamic, joint influence on FCz amplitude and the
prediction error is depicted in Fig. 3F. The reference-corrected
measures exhibit an inverse relationship, whereby relatively higher
190-ms latency FCz ERP amplitudes are associated with lower
prediction errors (mean r=−0.24, SD 0.28, t=−2.96, p=0.013,
Fisher's z-normalized r).
Discussion

In this study we set out to evaluate the neural dynamics of choice
during rewarded learning. We used a probabilistic rewarded learning
task, a temporal difference model of reinforcement learning, and
event-related potentials (ERPs) to determinewhether and how choice
influenced reward processing. In the task, subjects were uninformed
about the probabilistic relationship between stimulus choices and
rewards, so the relative merit of various options had to be learned
through trial-and-error. By fitting each subject's trial-by-trial choices
with the model, we inferred on each trial their choice valuations and,
in conjunction with the feedback they received, the corresponding
per-trial prediction error. We evaluated the differential influence of
choice on how the prediction error is processed by comparing the
reward-locked ERPs in choice and otherwise identical reference trials.
Choice evoked a stronger positivity than non-choice reward proces-
sing. This difference exhibited a frontocentral scalp distribution and
peaked at about 200 ms after feedback onset. This differential brain
response was also negatively correlated with the differential
prediction error magnitudes.

image of Fig.�2


Fig. 3. Choice and prediction error. (A) Prediction error magnitude, averaged separately for choice and reference trials in each block, mean±standard error across subjects. (B) Event
related potential (ERP) responses at electrode FCz to reward signal onset (vertical line at time=0 ms), averaged separately for choice and reference trials. Solid black line shows
difference wave, choice minus reference. (C) Mean 190-ms latency ERP amplitude, averaged separately for choice and reference trials over each block. Error bars are±standard error
across subjects. (D) Scalp topography of 190-ms latency ERP, interpolated across 64 scalp channels, showing grand average amplitude separately for choice and reference trials.
Difference topography includes approximate electrode locations in 2-d projection. Color bar indicates ERP amplitude in microvolts. (E) Image valuations, mean across subjects (j
indexes images in order least to most favorable pre-reversal). (F) Relationship between mean difference FCz ERP amplitude at 190 ms latency and mean choice-reference prediction
error. Linear regressions for each subject, across 16 blocks. Inset; Fisher's normalized r, mean±SE across subjects.
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Rewarded learning

Subjects demonstrated rapid albeit imperfect learning of the
relative value of the four images in the task. Subjects chose the more
favorable image an average of 72% of the time over the choice trials in
the first block, already significantly higher than the 50% chance level.
This was likely due to a combination of two factors: subjects could
learn about stimulus–reward contingencies from the reference trials
and block-wise performance was determined by collective perfor-
mance over 12 choice trials in each block. By the second block, choice

image of Fig.�3
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performance was at 83%, within the range around which performance
persisted throughout the rest of the first phase of the experiment,
until it rose to 90% in the last block. The model simulation exhibited a
similar profile, with performance well-above chance in the initial
block and an increase to “steady state” performance by the second
block. During this steady state period, however, the model achieved
on average 10% better performance than the human subjects. That the
model did not rise to 100% favorable choices illustrates the difficult,
probabilistic nature of the task. It also suggests that the relative
reward contingencies among all four stimuli might only be robustly
learned if a sufficiently conservative learning rate and emphasis on
exploitation was used. This would, however, severely hamper
subjects' ability to adapt to the reversal in reward contingencies.
Alternatively, one could bypass this trade-off and improve subjects'
steady state performance by increasing information about the
contingencies without increasing choice demands, as could be
implemented experimentally by increasing the ratio of reference to
choice trials. In other words, non-choice sampling of a noisy
probabilistic environment would benefit subsequent choices in the
same context.

When the reward contingencies were covertly reversed, subjects
continued to make choices that were previously more rewarding. This
perseveration was evident from the below-chance performance in the
first post-reversal block. However, the subjects learned the new
reward contingencies, with above-chance performance by the third
post-reversal block and for the remainder of the experiment.
Interestingly, this adaptation occurred faster in the model, suggesting
that human subjects are slower at “letting go” of previously learned
associations. Human subjects also demonstrated a lower mean
“steady state” performance in the post-reversal than in the pre-
reversal phase, consistent with previous studies using different types
of reversals (Cools et al., 2002; Frank and Claus, 2006). In contrast, the
model achieved a mean steady state performance level in the post-
reversal phase that was approximately the same as in the pre-reversal
phase. Thus, subjects' slower adaptation and lower steady state
performance post-reversal may indicate a higher level of exploration
and/or increased expectation of dynamics in the world. This would
represent a meta level strategy not captured by simple static learning
rate and exploration bias parameters in the current model.

In the present task the highest performance model coincided with
a relatively low learning rate and a strong bias to exploit existing
knowledge. Both of these suggest that a relatively conservative
approach leads to better overall performance in this task. Conversely,
high learning rates would give undue influence to each individual
trial's feedback. Likewise, too much exploration would not allow one
to take advantage of reward contingency knowledge built up over
learning. These characteristics are natural outcomes of a task with
probabilistic reward contingencies and a covert reversal in those
contingencies. It is worth noting, however, that of course some
learning is needed, because if the learning rate is too low (e.g. 0.01),
reward contingencies are not learned fast enough in this task, and
overall performance (as measured by total winnings) is correspond-
ingly reduced. One might expect a similarly convex function for the
exploration bias: too much leads to nearly random choices, but too
little leads to inflexible choice policies that may not appropriately
sample the space of stimulus–reward contingencies. This latter issue
is particularly important in dynamic environments, as represented by
the reward contingency reversal in the present experiment. However,
even if there was no exploration in the choice trials, reference trials in
the present experiment allow subjects to still sample the space of
stimulus–reward contingencies. This might be why overall perfor-
mance of our model simulation suggests monotonic improvement
with a bias toward exploitation. This question could be partly
addressed by expanding the space of exploration bias parameter to
higher values, i.e. beyond 10 used in the present experiment. A more
principled way to investigate this would be to systematically vary the
nature of information provided in the reference trials or the ratio of
reference to choice trials.

Choice and prediction errors

The TDmodel we used allowed us to infer from each subject's trial-
by-trial choices their choice valuations and the corresponding per-
trial prediction error. This is clearly less obtrusive and less subjective
than explicitly asking subjects about their expectations on every trial
(Hajcak et al., 2007a). It is also more fine grained than estimating
prediction errors based on expectations dichotomized from early and
late phases of learning (Bellebaum and Daum, 2008). Block-wise
dynamics of the reward prediction errors, collapsed across both trial
types, illustrated the subjects' gradual learning of the relative reward
contingencies and adapting to the unannounced reward contingency
reversal: themean amplitudes of the prediction errors computed from
the model generally decrease with blocks, with the exception of a
transient dramatic increase after the change in reward contingencies.

When prediction error magnitudes are evaluated separately for
choice and reference trials, two interesting patterns emerged. The first
pattern to note is that the choice trial prediction error magnitudes are
generally lower. This is expected from the simple fact that, over the
course of learning the relative reward contingencies, choice trials
allow one to more frequently choose the image more likely to pay off.
On average this leads to lower prediction error magnitudes. It may be
that your expectations are more in line with actual feedback when
you have volitional control over the actions onwhich the expectations
are based. This could be investigated in future studies by dynamically
matching the frequency of image presentations in the reference trials
to the images selected by, for example, the previous subject. The
second pattern of interest is how the mean prediction error
magnitudes for the choice trials become substantially lower than
the non-choice trials in the last three blocks of each phase. This
roughly corresponded to the periods during which stimulus valua-
tions (Q-values) were “well separated” not only between the most
favorable and second most favorable stimuli, but also between the
second and third most favorable stimuli. Given the rational bias
toward choosing more favorable images, this would lead to markedly
lower prediction error magnitudes on choice trials. Earlier periods of
commensurate “separation” between the third and fourth best stimuli
(but not the second and third) would not produce commensurately
lower prediction error magnitudes, because the mean valuations for
those stimuli are lower (closer to 0.5). In summary, choice trials
correspond to lower overall prediction errormagnitudes and a greater
prediction error magnitude reduction with learning. Prediction error
magnitudes for non-choice reference trials did not decrease as
dramatically as for choice trials toward the end of each phase simply
because the lack of volitional control precludes subjects from
“choosing” an image whose valuation is higher, more likely to
produce a reward, and more likely to meet their expectations.

The prediction error magnitudes for both choice and reference
trials follow temporal dynamics that are very similar between the pre-
and post-reversal phases. We expect that this was due to our use of
identical trial sequences in the two phases (notwithstanding the
reward contingency reversal, of course). We intentionally implemen-
ted identical trial sequences in the two phases to eliminate that as a
causal factor for comparing the two phases. One could, of course, use
different trial sequences between subjects, while retaining the same
counterbalancing and run-length limitations. Although this would
likely wash out trial sequence-specific effects in measures derived
from across-subject averages, it could introduce additional subtle
variables that would have to be carefully controlled for in future
experiment designs. Likewise, one could hypothesize that prediction
errors could be differentially weighted in choice versus reference
trials. This could be tested by fitting subjects' behavior with separate
learning rates for the two trial types. Although we deemed there to be
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insufficient data to justify use of an additional model parameter in the
present study, this would nevertheless represent an interesting line of
inquiry for future studies.

Neural dynamics associated with choice

Importantly, choice not only modulated the prediction error
magnitude associated with rewarded learning, but also differentially
influenced the associated neural dynamics. Specifically, choice evoked
greater frontocentral positivity in the scalp ERP than non-choice
reward processing, peaking about 190 ms after feedback onset. It is
unlikely that this post-feedback ERP difference was an artifactual
result of baseline-subtracting different pre-choice activity, because
the ERP waveforms associated with the choice and reference
conditions start and finish the post-feedback period at approximately
the same amplitudes. Furthermore, the ERP difference is not due to a
different proportion of rewarding versus non-rewarding trials in the
choice compared to the reference trials, because for the ERP analyses
we used for each subject a “balanced” subset of reference trials
involving the exact same distribution of images (and therefore reward
contingencies) as those produced by their choices in that block.

The temporal morphology of our ERP waveforms was strikingly
similar for choice and non-choice post-reward processing, with the
primary distinction being one of amplitude over the approximately
170–400 ms window after reward onset. It may be that reward
prediction error processing is recruiting similar neural substrates in
both cases, but choice places greater “demands” on the same
substrate. However, we cannot exclude the possibility that choice
recruits a different neural substrate for reward processing. This might
be suggested by early evidence that choice is associated with post-
choice changes in single unit firing in human hippocampal gyrus
(Halgren et al., 1978) and more recent evidence of dorsolateral
prefrontal cortical influence on the choice valuation putatively
instantiated in ACC (Hare et al., 2009). The topographic distribution
of the differential ERP associated with choice that we found is similar
to the frontocentrally dominant topography found in previous studies
of the feedback-related negativity. Furthermore, although the purpose
of the present study was not to compare ERP responses to rewarding
versus non-rewarding feedback, the higher proportion of rewarding
feedback in our experiment is consistent with the higher amplitude
positive ERPs Yeung et al. (2005) found in “gain” versus “loss” trials. In
both cases, our results are consistent with previous research
suggesting a role for ACC in prediction error processing, as shown
with fMRI in humans (Holroyd et al., 2004) and single unit recordings
in monkeys (Amiez et al., 2006). Although our results suggest that
choice influences prediction error processing, the results do not
preclude the likelihood that the ACC is involved in an array of more
general “pertinence monitoring” (Fujiwara et al., 2009; Procyk and
Josephy, 2001; Quilodran et al., 2008) or “salience” signaling
functions, as with one notable interpretation of the phasic mesence-
phalic DA signal (Redgrave and Gurney, 2006). It may be that post-
choice processing is inherently treated as more salient as a simple
consequence of having been actively engaged by the choice, compared
to similar post-reward processing in the absence of a preceding
choice. Another not mutually exclusive possibility is that the ERPs
reflect an element of surprise correlated with the magnitude of the
prediction error and also associated with the occurrence of low
probability events (Mars et al., 2008).

The choice and reference conditions also differed in their posterior
ERP amplitudes at the 190 ms latency, with choice inducing lower
amplitude than the non-choice condition. Because the stimuli
remained viewable for 600–800 ms after reward signal onset, it is
tempting to speculate that this difference reflects distinct post-reward
visual processing of the stimuli depending on whether or not the
subject just made a choice. This possibility could be tested
experimentally in future studies with for example eye tracking.
Alternatively, it may be that in the case of the reference trials, subjects
did only the pre-response visual processing of the stimuli necessary to
detect which one to choose. Because the images remained visible for
600–800 ms after response, the subjects could have delayed image
value retrieval on the reference trials, possibly spilling over into the
post-feedback period. This would induce a confound when interpret-
ing the difference in choice- versus reference-ERPs post feedback.
However, if this were the case, the subsequent processing, putatively
involving comparison with the feedback signal to form a prediction
error used to update image valuations, should be temporally delayed
in the reference compared to the choice trials. Yet the choice- and
reference-ERPs as depicted in Fig. 3B are precisely time locked until
about 150 ms after the feedback signal onset, making this interpre-
tation unlikely.

Previous studies have indirectly sought to investigate how
prediction error processing is influenced by choice. For example, in
an experiment without reward or learning per se, Gentsch et al.
(2009) dichotomized the sources of feedback into “internal” and
“external” by modifying the Eriksen flanker task to include two types
of error conditions. The “internal” errors arose when subjects realized
they made an incorrect response. A novel “external” error condition
was produced by omitting the confirmatory feedback usually
provided on correct trials. Subjects were informed prior to the
experiment that this would occasionally occur due to malfunctions in
the response equipment. The internal errors were associated with a
much earlier latency response negativity (~60 ms), whereas the
external errors evoked a negativity consistent with the typical FRN
(~200–300 ms). Thus the internal and external “sources” of errors
evoke differential processing of the feedback signal. Internal and
external sources of actions and feedback are homologous to condi-
tions in which someone may or may not get to choose between
available options. Thus one would predict that conditions with and
without choice would likewise evoke differential processing of
rewarding feedback. This is also warranted by recent demonstrations
of the effect of “personal control” in gambling games (Clark, 2010). In
the present study, however, the choice- and non-choice ERP wave-
forms did not substantially diverge until almost 200 ms after the
feedback signal onset, and as such might both be considered
physiological metrics of “external” origin.

Yeung et al. (2005) demonstrated that choice increases the
amplitude of the FRN. However, the choice versus non-choice
comparison was done with two separate experiments, neither of
which included a contingent relationship between images and
rewards, and both of which included the confounding task demands
associated with updating and maintaining a cumulative sum of
winnings. By not including other task demands temporally coincident
with the immediate post-reward period and interleaving choice and
non-choice trials within a single experiment, we were able to more
directly investigate the differential influence of choice on reward
processing.

We used the same rewarded learning paradigm with which we
have previously shown that learning performance depends on the
integrity of the human dopamine system (Peterson et al., 2009). A
growing body of convergent evidence (Amiez et al., 2005, 2006;
Holroyd and Coles, 2002; 2008; Jocham and Ullsperger, 2009; Vezoli
and Procyk, 2009) suggests that ascending projections from mesen-
cephalic dopaminergic nuclei modulate areas such as ACC. If the
frontocentrally focal ERP effects we observed are modulated by ACC
activity, then our results showing a dependency on choice are
consistent with Morris et al.'s (2006) finding using the same
experimental paradigm in primates that phasic DA cell firing
influenced choice policy. Moreover, as reviewed in the Introduction,
phasic dopamine activity is thought to encode the reward prediction
error posited in our model (Schultz, 1997). Collectively, our evidence
lends further support to Holroyd and Coles (2002) conceptual model
linking dopamine, reinforcement learning, and feedback-processing
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assayed with scalp potentials. Our results also suggest a possible
extension to Holroyd's framework to accommodate differential
reward processing for learning that does or does not involve choice.

It is worth noting that important differences between the present
study and that of Morris et al. (2006). Specifically, Morris et al. were
interested in whether dopamine cell responses predicted future
actions. Their monkeys were highly overtrained, having undergone
extensive behavioral training on the task before the physiological
recordings. Thus, Morris et al. were studying the monkeys after
learning had already taken place—they were not studying brain
processes that occurred during learning. In contrast, we focused in the
present study on brain events associated with post-feedback event
processing during learning.

We also posed the question as to whether choice's differential
influence on post-reward neural dynamics bore a relationship to its
differential influence on prediction error magnitude. We found that
the differential brain response was negatively correlated with the
differential prediction error magnitudes. Although perhaps related to
the steep drops in choice prediction error midway through each
phase, the two classes of events do not perfectly align in a block-wise
fashion: the choice prediction errors drop in the sixth block in each
phase, whereas the choice ERPs drop transiently in blocks four and
five. Thus, the ERP dynamics do not appear to be a result of using the
identical trial sequence in each phase. Furthermore, they temporally
precede the drops in prediction error. One possibility is that relative
stimulus valuations are crystallizing but not fully exploited until some
number of trials later, at which time exploitative choices begin to
produce decreased overall prediction error magnitudes. Relatedly,
perhaps the transient decreases in choice ERP amplitudes are
associated with transient changes in relative certainty, in which
subjects make a transition from an uncertain to a relatively more
certain state. Uncertainty has been postulated to have a significant
influence in learning, choice, and their neural correlates (Behrens et
al., 2007; Doya, 2008). Nevertheless, these notions are strictly
speculative and future experiments explicitly designed to test them
are needed. Importantly, because the differential ERP is relatively high
both early and late in each phase, whereas the differential prediction
error magnitude is much higher in late than in early parts of each
phase, the differential ERP results appear to be due to the differential
contribution of choice, and not differences in reward prediction error
magnitude induced by choice.

The time window of interest in the present experiment was the
post-feedback periodwhen the putative prediction error is being used
to update image valuations. The image valuations are, in turn, used to
help inform choices on subsequent trials. Thus the post-choice
processing is likely an important part of the intersection between
rewarded learning and choice's more broadly defined domain of
decision making.
Conclusions

In the face of multiple possible actions, choice plays a critical role
in rewarded learning. We found that the reward prediction error and
its neural correlates measured with scalp ERPs were differentially
modulated by choice. Rewarded learning that required choice
involved different dynamics, both in terms of the learning process
and the neural activity involved in processing the reward signal. These
effects were specific to choice, because the intermingled choice and
non-choice learning conditions were otherwise identical in terms of
stimuli, motor responses, and stimulus–reward contingencies. The
results support the notion that behavioral, computational, and
neurobiological accounts of reinforcement learning should carefully
consider the differential influence of choice on reward processing
during learning. Choice allows us to actively sense relationships
between stimuli, actions, and rewards. This ability to selectively
engage with our environment in the form of choice enables us to
guide our learning and to take advantage of its benefits.
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